Sushil Doranga, Ph.D.
Assistant Professor
Dr. Sushil Doranga is an assistant professor at the 果冻传媒, Beaumont, Texas since September 2019. Prior Joining to Lamar, Dr. Doranga worked at General Electric (GE) Canada in the transport intelligence division as an advanced lead engineer. During his tenure at GE, Dr. Doranga was instrumental in quantifying the pin fretting of the electronic connectors as a result of the in-service vibration.
His research in GE was mainly focused in (i) quantifying the relative motion of the electronic connector,(ii) developing the methodology to measure the pin fretting of the connectors, (iii) providing the vibration isolation solution to the electromechanical systems, (iv) generating and implementing the accelerated loading profile for the electromechanical systems that are used in the locomotives and the railway tracks and (v) design of experiments for the accelerated testing of electromechanical systems.
Dr. Doranga received his Ph.D. in mechanical engineering from the University of Manitoba, Winnipeg, Canada in April 2015. During his Ph.D., he developed the novel “reverse explicit theory” for the nonlinear system identification of a dynamic system subjected to base excitation. His theory is particularly useful to the structure where the input is in the form of displacement/acceleration.
The identification of nonlinear structures in the absence of force measurement is a challenge hardly ever tackled in the technical literature, yet it represents an important interest for industries, in particular for the space industry where structures are always tested using shaking tables.
Dr. Doranga Ph.D. research was focused in developing the methodology to identify the nonlinear systems where the structure is tested using the electrodynamic/mechanical shaker.
Dr. Doranga has extensive experience in modal analysis, transient analysis and frequency response analysis where the input is in the form of displacement/accelerations.
The traditional concept of vibration analysis lies on the fact of measuring force as an input. This approach has the limitation when applying to practical engineering structures, where the practical engineering structures are usually tested by using the base excitation as an input.